Customer Needs

To better understand the desired project outcomes, we created a list of questions to ask the sponsor. Unfortunately, our sponsor was unable to meet with us, or return any of our emails, but that did not stop us from interpreting customer needs from assumed responses to our questions.

Question	Assumed Customer Response	Interpreted Need
How many uses will be considered	As many as possible.	1) The product can be
reusable?		used indefinitely.
What are aspects of the current	The Apollo struts were	2) The product is lightweight.
product that are positive?	lightweight.	
What are aspects of the current		3) The product can be sent to the
product that are negative?		moon and used repeatedly.
Will the project return to Earth?	No.	4) The product will not return to
		Earth in between trips.
How often should maintenance be	_	5) No routine maintenance
performed on the product?		is necessary during remainder
		of each lunar trip.
	Module will have smaller landings	· ·
when it says "hop"?	once already on the surface.	qualities does not change or
		diminish after an impact.
Why are shock absorbers needed?	To reduce the impact velocity	7) The dampeners reduce the
	of the lander to a comfortable	velocity to 3 feet per second.
	level.	
What tools will be needed for	, ,	8) Multiple components can
maintenance?		be fixed by the same tool.
What is the maximum landing		9) The product can handle an
speed of the lunar lander?		impact speed of 10 feet per
		second.
How many legs are on the	4 legs.	10) Each of the four legs will have
module?		a shock absorber component.
How massive is the lunar module?		11) The product can support
		32,800 kg.
Will the legs need to be load	No.	12) The legs are only required to
bearing on the Earth?		bear load under lunar gravity.
What is the maximum angle that	10 degrees.	13) The product can land at up to
the lander could make with the		a 10-degree offset from the z-axis.
surface?		

The fundamental needs of this project have been interpreted as the following: A lightweight product that is reusable in space and can repeatedly withstand an initial impact velocity of 10ft/s.

Team 515